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LElTER TO THE EDITOR 

The three-dimensional XY model in P-fold random anisotropy 
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SRI 3SD. U K  

Received I October 1990 

Abstract. The three-dimensional XY model in the presence of  two- and threefold random 
anisotropy has been investigated by Monte Carlo simulation and finite-size scaling using 
system sizes 4'. 8'. 16'. 32'. The results are consistent with the existence of a conventional 
transition to a spin glass phase at 7,=2.2 and with Correlation exponent u=O.67. No 
evidence for quasiferromagnetism is found. 

Randomness can have a profound effect on the critical properties of model magnetic 
systems. New phases can be produced and critical dimensionalities changed. A classic 
example of this is the much studied Edwards-Anderson model of a spin glass [I]. 
Here the randomness arises from fluctuations in both the magnitude and sign of the 
spin-coupling constant. Such randomness destroys ferromagnetism, but there is still a 
phase transiiion for the thrce-dimensional k ing  spin glass and, for greater than three 
dimensions, for the equivalent Heisenberg system. However, the result for Heisenberg 
systems is still controversial 121. 

Here the concern will be with systems where the randomness arises not from bond 
disorder but from random anisotropy fields acting on each spin. That is, each spin 
resides in an anisotropy field of the general form 

where s' is the spin component and the { h u }  are a set of random u-rank tensors. Such 
terms arise from the interaction of the spin with the host, for example intermetallic 
compounds of rare earths and nonmagnetic metals [3J. 

Random anisotropy models seem to have been studied much less than spin glasses 
and much of the work has been restricted to the case of second rank anisotropy which 
has certain simplifying features in the limit of an infinite anisotropy field. The critical 
properties induced by random anisotropy are not clear and several scenarios exist. 
What does seem to be agreed upon is that the domain-wall arguments of Imry and 
Ma [4] can be extended to the case of random anisotropy and that ferromagnetism is 
destroyed in less than four dimensions for continuous spin models [5 ] .  

Dotsenko and Feigelman [6] investigated the XY model in twofold anisotropy and 
have inferred the existence of spin glass type order and quasiferromagnetismt. 
However, Fisher [7], in an illuminating exposition, cast doubt on this finding since 
their perturbative method was being used in the non-perturbative region. Pelcovits et 

t Quasiferromagnetism is the name given to a phase with zero ferromagnetic order parameter but which 
has algebraic decay of the correlation functions the same as in the pure two-dimensional X Y  model. 
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af [8] have also predicted spin glass behaviour for twofold anisotropy, their results 
becoming exact in the limit of infinite spin dimensionality. However, it has been 
suggested [7] that the spin glass phase discussed in the literature is an artefact of the 
spherical limit. 

Aharony and Pytte [SI, investigating the twofold case, predict quasiferromagnetism, 
and this result has been extended to any anisotropy for the XY model [IO]. More 
recently Villain and Fernandez [ l l ]  in a real space renormalization group study of the 
XY model excluding vortices also predicted quasiferromagnetism. However, Chud- 
novsky et a/  [ 5 ]  investigated the ground state of the XY model in p-fold anisotropy 
and found no quasiferromagnetism in three dimensions. 

Thus the situation is unclear. The problem has been investigated using Monte Carlo 
simulation and finite-size scaling for the XY model on a simple cubic lattice and in 
the presence of p-fold anisotropy. The Hamiltonian for such a system is 

where OcBi<2?r  are site variables and { c $ ~ )  are quenched in random axes chosen 
uniformly between 0 and 2 ~ .  Some previous simulations of (1) have been restricted 
to the case of D+OO and p = 2  where the Hamiltonian becomes Ising-like [12,13]. No 
such limit is taken here and the values J = D = 1 are used. 

The s i ~ c ! 8 f a n  has cocce:ned i!se!f wi:h a search For $pia g!ass order and or 
quasiferromagnetism, and estimating T, and the exponent U. Hamiltonian (1) has been 
simulated for p = 2 and 3, and for the range of system sizes of linear dimension N = 4, 
8, 16, 32. 

Spin glass order was investigated by calculating the overlap between spin configur- 
ations at time T and f given by 

where T and f are measures in steps per spin. The spin glass order parameter Q is 
related to (2) by 

Q = lim q( I ) .  
iim 

The calculation proceeded as  follows. The system was first relaxed for a time T and 
the spin configuration at that time stored. The system was then relaxed for a further 
time T after which the probability distribution P ( q )  was calculated by observing the 
distribution of q ( t )  for 27 further Monte Carlo steps. From the distribution of P ( q )  
the following scaling function was constructed 

Where [ ] denote average over P ( q ) .  Each simulation was initiated from a random 
spin configuration and the system slowly cooled in temperature steps of either 0.1 J or 
0.05J. Results for g were averaged over between 12 and 25 distinct anisotropy field 
realizations for the larger sized systems and many more for the smaller systems. 
unueresiimuing ine rciaxauun time 7 wuuiu icsuii i n  Bii  U V C L C S L I I ~ ~ ~ ~ C  ut 8. i i i u ~  LV 

try to ensure that T was sufficiently long the run time was increased and the effect on 
g monitored. In this way T was estimated as the time required to produce stable g and 
beyond which increase in run time produced no discernible drift down in g. The 
stability of g was tested over tens of thousands of steps and in the case of the small 
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systems by increasing the run time several fold. It was found that for the smaller 
systems the required run time was about 80 000 steps and for the larger systems 250 000 
steps. Under these conditions the magnetization often reduced to a small residual with 
many changes of sign. This is taken to indicate that phase space is being well explored 
and that metastability is not the cause of the results reported. I would thus judge the 
time stability of the results reported here to be good. 

The scaling function g has been successful in locating spin glass order [12,14], 
and has the functional form 

g = g ( N ” ” (  T -  T,)). 
Plots of g against temperature are shown in figures 1 and 2 for the case of p = 2 and 

Figure 1. g (equation 3 )  against temperature Tforthecaaeofp=2.Thecritiealtemperature 
i s  indicated by the crossing of the curves at approximately T = 2.2: squares = 4’, triangles = 
8’. stars = 16’. dots = 32’. The lines are only visual guides. 

g~~ 0.2 

0 
2.1 2.2 2.3 2.4 

r 
Figure 2. g (equation 3 )  against temperature T for the ease p = 3. The crilical temperature 
is indicated by the crossing of the curves at T =  2.2. T h e  symbols have the same meaning 
as in figure I and the lines are only yisual guides. 
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3 respectively. It is seen that at T = 2.2 the curves cross indicating that the results are 
size independent at this point and hence this temperature is the critical temperature 
T,. It should also be noted that below T, the curves for different N values fan out. 
This i s  to he contrasted with the D+OO results found by Chakrobarti [12] where the 
curves coalesce for T less than T,. 

If the random anisotropy model is a quasiferromagnet then it might be expected 
that the temperature T, would be the terminus of a line of critical temperatures as in 
the two-dimensional X Y  ferromagnet. In this case all temperatures below T, are critical 
and the correlation length is always infinite. If such was the case then the plots for g 
would become size independent below T,. This does not appear to be the case from 
the plots in figures 1 and 2, arguing against quasiferromagnetism. Also quasiferromag- 
nets have infinite susceptibility a t  all temperatures below T,, consequently the variable 

0.2 

5 

0.1 

would behave as N-‘”‘‘’ below T,. As a signature of quasiferromagnetism a search 
has been made for such behaviour. Figure 3 shows a log-log plot of S against N for 
T less than T,; linearity would indicate quasiferromagnetism. The results shown in 
figure 3 do not support this conclusion as the plots are clearly nonlinear, again arguing 
against quasiferromagnetism. 
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Figure 3. S (equation 4) against N. log-log scale. Dots indicate the plot for p = 3  and 
T=2.1 ,  stars indicate the plot for p = 2  and T=2.IS. 

Figure 4 shows a plot of g against NI’”( T - T,) for the values T,= 2.2 and Y = 0.67. 
The data points on this figure are the results of averaging over many hundreds of 
samples giving greater numerical stability but restricting the simulation to small system 
sizes. Inspection suggests that the plots lie along universal curves indicating that T = 2.2 
and U = 0.67 are not inconsistent with scaling. These values for T, and U are of similar 
value to those found by high temperature series for the pure system [15]. 

In the two-dimensional X Y  model in random anisotropy Cardy and Ostlund [16] 
have predicted the existence of more than one phase transition for sufficiently large 
p. Simulation has given support to this conclusion [18]. It seems possible that in three 
dimensions there may be more than one phase transition for at least some p. It therefore 
could be that some of the predictions made for this model could still be true at lower 
temperatures. Because of extremely long relaxation times, low temperatures are difficult 
to access by Monte Carlo simulation. 
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Figure4. Scalingplolsofgagainrt I= N”’ (T-T , )  usingv=0.67and Tc=2.2: ( 0 )  is for 
p = 3 , ( b )  i s f a r p = 2 .  Dots=4’andstars=8’. 
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